Three projects delivered a microprocessor at about the same time: Garrett AiResearch's Central Air Data Computer (CADC) (1968), Texas Instruments (TI) TMS 1000 (1971 September), and Intel's 4004 (1971 November).
CADC For more details on this topic, see Central Air Data Computer.In 1968, Garrett AiResearch (which employed designers Ray Holt and Steve Geller) was invited to produce a digital computer to compete with electromechanical systems then under development for the main flight control computer in the US Navy's new F-14 Tomcat fighter. The design was complete by 1970, and used a MOS-based chipset as the core CPU. The design was significantly (approximately 20 times) smaller and much more reliable than the mechanical systems it competed against, and was used in all of the early Tomcat models. This system contained "a 20-bit, pipelined, parallel multi-microprocessor". The Navy refused to allow publication of the design until 1997. For this reason the CADC, and the MP944 chipset it used, are fairly unknown. Ray Holt graduated California Polytechnic University in 1968, and began his computer design career with the CADC. From its inception, it was shrouded in secrecy until 1998 when at Holt's request, the US Navy allowed the documents into the public domain. Since then several have debated if this was the first microprocessor. Holt has stated that no one has compared this microprocessor with those that came later. According to Parab et al. (2007), "The scientific papers and literature published around 1971 reveal that the MP944 digital processor used for the F-14 Tomcat aircraft of the US Navy qualifies as the first microprocessor. Although interesting, it was not a single-chip processor, as was not the Intel 4004 – they both were more like a set of parallel building blocks you could use to make a general-purpose form. It contains a CPU, RAM, ROM, and two other support chips like the Intel 4004. Interesting it was made from the exact P-Channel technology and operated at Mil Spec's with larger chips. An excellent computer engineering design by any standards. Its design indicates a major advance over Intel and two year earlier. It actually worked and was flying in the F-14 when the Intel 4004 was announced. It indicates that today’s industry theme of converging DSP-microcontroller architectures was started in 1971." This convergence of DSP and microcontroller architectures is known as a Digital Signal Controller.
Gilbert HyattGilbert Hyatt was awarded a patent claiming an invention pre-dating both TI and Intel, describing a "microcontroller". The patent was later invalidated, but not before substantial royalties were paid out.
TMS 1000The Smithsonian Institution says TI engineers Gary Boone and Michael Cochran succeeded in creating the first microcontroller (also called a microcomputer) and the first lone-chipped CPU in 1971. The result of their work was the TMS 1000, which went commercial in 1974. TI stressed the 4-bit TMS 1000 for use in pre-programmed embedded applications, introducing a version called the TMS1802NC on September 17, 1971 that implemented a calculator on a chip.
TI filed for a patent on the microprocessor. Gary Boone was awarded U.S. Patent 3,757,306 for the single-chip microprocessor architecture on September 4, 1973. In 1971 and again in 1976, Intel and TI entered into broad patent cross-licensing agreements, with Intel paying royalties to TI for the microprocessor patent. A history of these events is contained in court documentation from a legal dispute between Cyrix and Intel, with TI as intervenor and owner of the microprocessor patent.
A computer-on-a-chip combines the microprocessor core (CPU), memory, and I/O (input/output) lines onto one chip. The computer-on-a-chip patent, called the "microcomputer patent" at the time, U.S. Patent 4,074,351, was awarded to Gary Boone and Michael J. Cochran of TI. Aside from this patent, the standard meaning of microcomputer is a computer using one or more microprocessors as its CPU(s), while the concept defined in the patent is more akin to a microcontroller.
Intel 4004 The 4004 with cover removed (left) and as actually used (right) Main article: Intel 4004The Intel 4004 is generally regarded as the first commercially available microprocessor, and cost $60. The first known advertisement for the 4004 is dated November 15, 1971 and appeared in Electronic News. The project that produced the 4004 originated in 1969, when Busicom, a Japanese calculator manufacturer, asked Intel to build a chipset for high-performance desktop calculators. Busicom's original design called for a programmable chip set consisting of seven different chips. Three of the chips were to make a special-purpose CPU with its program stored in ROM and its data stored in shift register read-write memory. Ted Hoff, the Intel engineer assigned to evaluate the project, believed the Busicom design could be simplified by using dynamic RAM storage for data, rather than shift register memory, and a more traditional general-purpose CPU architecture. Hoff came up with a four–chip architectural proposal: a ROM chip for storing the programs, a dynamic RAM chip for storing data, a simple I/O device and a 4-bit central processing unit (CPU). Although not a chip designer, he felt the CPU could be integrated into a single chip, but as he lacked the technical know-how the idea remained just a wish for the time being.
While the architecture and specifications of the MCS-4 came from the interaction of Hoff with Stanley Mazor, a software engineer reporting to him, and with Busicom engineer Masatoshi Shima, during 1969, Mazor and Hoff moved on to other projects. In April 1970, Intel hired Italian-born engineer Federico Faggin as project leader, a move that ultimately made the single-chip CPU final design a reality (Shima instead designed the Busicom calculator firmware and assisted Faggin during the first six months of the implementation). Faggin, who originally developed the silicon gate technology (SGT) in 1968 at Fairchild Semiconductor and designed the world’s first commercial integrated circuit using SGT, the Fairchild 3708, had the correct background to lead the project into what would become the first commercial general purpose microprocessor, since it was his very own invention, SGT in addition to his new methodology for random logic design, that made it possible to implement a single-chip CPU with the proper speed, power dissipation and cost. The manager of Intel's MOS Design Department was Leslie L. Vadász. at the time of the MCS-4 development, but Vadasz's attention was completely focused on the mainstream business of semiconductor memories and he left the leadership and the management of the MCS-4 project to Faggin, who was ultimately responsible for leading the 4004 project to its realization. Production units of the 4004 were first delivered to Busicom in March 1971 and shipped to other customers in late 1971.
Pico/General Instrument The PICO1/GI250 chip introduced in 1971. This was designed by Pico Electronics (Glenrothes, Scotland) and manufactured by General Instrument of Hicksville NYIn 1971 Pico Electronics and General Instrument (GI) introduced their first collaboration in ICs, a complete single chip calculator IC for the Monroe/Litton Royal Digital III calculator. This chip could also arguably lay claim to be one of the first microprocessors or microcontrollers having ROM, RAM and a RISC instruction set on-chip. The layout for the four layers of the PMOS process was hand drawn at x500 scale on mylar film, a significant task at the time given the complexity of the chip.
Pico was a spinout by five GI design engineers whose vision was to create single chip calculator ICs. They had significant previous design experience on multiple calculator chipsets with both GI and Marconi-Elliott. The key team members had originally been tasked by Elliott Automation to create an 8 bit computer in MOS and had helped establish a MOS Research Laboratory in Glenrothes, Scotland in 1967.
Calculators were becoming the largest single market for semiconductors and Pico and GI went on to have significant success in this burgeoning market. GI continued to innovate in microprocessors and microcontrollers with products including the CP1600, IOB1680 and PIC1650. In 1987 the GI Microelectronics business was spun out into the Microchip PIC microcontroller business.
Four-Phase Systems AL1The Four-Phase Systems AL1 was an 8-bit bit slice chip containing eight registers and an ALU. It was designed by Lee Boysel in 1969. At the time, it formed part of a nine-chip, 24-bit CPU with three AL1s, but it was later called a microprocessor when, in response to 1990s litigation by Texas Instruments, a demonstration system was constructed where a single AL1 formed part of a courtroom demonstration computer system, together with RAM, ROM, and an input-output device.
No comments:
Post a Comment